Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
MMWR Morb Mortal Wkly Rep ; 72(23): 613-620, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20243279

ABSTRACT

Since the Global Polio Eradication Initiative (GPEI) was established in 1988, the number of wild poliovirus (WPV) cases has declined by >99.9%, and WPV serotypes 2 and 3 have been declared eradicated (1). By the end of 2022, WPV type 1 (WPV1) transmission remained endemic only in Afghanistan and Pakistan (2,3). However, during 2021-2022, Malawi and Mozambique reported nine WPV1 cases that were genetically linked to Pakistan (4,5), and circulating vaccine-derived poliovirus (cVDPV) outbreaks were detected in 42 countries (6). cVDPVs are oral poliovirus vaccine-derived viruses that can emerge after prolonged circulation in populations with low immunity allowing reversion to neurovirulence and can cause paralysis. Polioviruses are detected primarily through surveillance for acute flaccid paralysis (AFP), and poliovirus is confirmed through stool specimen testing. Environmental surveillance, the systematic sampling of sewage and testing for the presence of poliovirus, supplements AFP surveillance. Both surveillance systems were affected by the COVID-19 pandemic's effects on public health activities during 2020 (7,8) but improved in 2021 (9). This report updates previous reports (7,9) to describe surveillance performance during 2021-2022 in 34 priority countries.* In 2022, a total of 26 (76.5%) priority countries met the two key AFP surveillance performance indicator targets nationally compared with 24 (70.6%) countries in 2021; however, substantial gaps remain in subnational areas. Environmental surveillance expanded to 725 sites in priority countries, a 31.1% increase from the 553 sites reported in 2021. High-quality surveillance is critical to rapidly detect poliovirus transmission and enable prompt poliovirus outbreak response to stop circulation. Frequent monitoring of surveillance guides improvements to achieve progress toward polio eradication.


Subject(s)
COVID-19 , Enterovirus , Poliomyelitis , Poliovirus , Humans , Pandemics , alpha-Fetoproteins , Disease Eradication , Population Surveillance , Global Health , COVID-19/epidemiology , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliomyelitis/diagnosis , Poliovirus/genetics , Poliovirus Vaccine, Oral , Disease Outbreaks/prevention & control , Immunization Programs
2.
Indian J Med Res ; 155(1): 129-135, 2022 01.
Article in English | MEDLINE | ID: covidwho-1924409

ABSTRACT

Background & objectives: Polio, measles, rubella, influenza and rotavirus surveillance programmes are of great public health importance globally. Virus isolation using cell culture is an integral part of such programmes. Possibility of unintended isolation of SARS-CoV-2 from clinical specimens processed in biosafety level-2 (BSL-2) laboratories during the above-mentioned surveillance programmes, cannot be ruled out. The present study was conducted to assess the susceptibility of different cell lines to SARS-CoV-2 used in these programmes. Methods: Replication of SARS-CoV-2 was studied in RD and L20B, Vero/hSLAM, MA-104 and Madin-Darby Canine Kidney (MDCK) cell lines, used for the isolation of polio, measles, rubella, rotavirus and influenza viruses, respectively. SARS-CoV-2 at 0.01 multiplicity of infection was inoculated and the viral growth was assessed by observation of cytopathic effects followed by real-time reverse transcription-polymerase chain reaction (qRT-PCR). Vero CCL-81 cell line was used as a positive control. Results: SARS-CoV-2 replicated in Vero/hSLAM, and MA-104 cells, whereas it did not replicate in L20B, RD and MDCK cells. Vero/hSLAM, and Vero CCL-81 showed rounding, degeneration and detachment of cells; MA-104 cells also showed syncytia formation. In qRT-PCR, Vero/hSLAM and MA-104 showed 106 and Vero CCL-81 showed 107 viral RNA copies per µl. The 50 per cent tissue culture infectious dose titres of Vero/hSLAM, MA-104 and Vero CCL-81 were 105.54, 105.29 and 106.45/ml, respectively. Interpretation & conclusions: Replication of SARS-CoV-2 in Vero/hSLAM and MA-104 underscores the possibility of its unintended isolation during surveillance procedures aiming to isolate measles, rubella and rotavirus. This could result in accidental exposure to high titres of SARS-CoV-2, which can result in laboratory acquired infections and community risk, highlighting the need for revisiting biosafety measures in public health laboratories.


Subject(s)
COVID-19 , Measles , Poliomyelitis , Rubella , Animals , Cell Line , Chlorocebus aethiops , Containment of Biohazards , Dogs , Public Health Surveillance , SARS-CoV-2 , Vero Cells
3.
PLoS One ; 17(2): e0263736, 2022.
Article in English | MEDLINE | ID: covidwho-1674020

ABSTRACT

Sudden emergence and rapid spread of COVID-19 created an inevitable need for expansion of the COVID-19 laboratory testing network across the world. The strategy to test-track-treat was advocated for quick detection and containment of the disease. Being the second most populous country in the world, India was challenged to make COVID-19 testing available and accessible in all parts of the country. The molecular laboratory testing network was augmented expeditiously, and number of laboratories was increased from one in January 2020 to 2951 till mid-September, 2021. This rapid expansion warranted the need to have inbuilt systems of quality control/ quality assurance. In addition to the ongoing inter-laboratory quality control (ILQC), India implemented an External Quality Assurance Program (EQAP) with assistance from World Health Organization (WHO) and Royal College of Pathologists, Australasia. Out of the 953 open system rRTPCR laboratories in both public and private sector who participated in the first round of EQAP, 891(93.4%) laboratories obtained a passing score of > = 80%. The satisfactory performance of Indian COVID-19 testing laboratories has boosted the confidence of the public and policy makers in the quality of testing. ILQC and EQAP need to continue to ensure adherence of the testing laboratories to the desired quality standards.


Subject(s)
COVID-19 Testing/standards , COVID-19/diagnosis , Clinical Laboratory Techniques/standards , Laboratories/standards , Mass Screening/standards , Quality Assurance, Health Care/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , COVID-19/epidemiology , COVID-19/genetics , COVID-19/virology , Humans , India/epidemiology , Quality Control , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Specimen Handling/methods
4.
PLoS Med ; 18(4): e1003587, 2021 04.
Article in English | MEDLINE | ID: covidwho-1231257

ABSTRACT

BACKGROUND: Unrest in Myanmar in August 2017 resulted in the movement of over 700,000 Rohingya refugees to overcrowded camps in Cox's Bazar, Bangladesh. A large outbreak of diphtheria subsequently began in this population. METHODS AND FINDINGS: Data were collected during mass vaccination campaigns (MVCs), contact tracing activities, and from 9 Diphtheria Treatment Centers (DTCs) operated by national and international organizations. These data were used to describe the epidemiological and clinical features and the control measures to prevent transmission, during the first 2 years of the outbreak. Between November 10, 2017 and November 9, 2019, 7,064 cases were reported: 285 (4.0%) laboratory-confirmed, 3,610 (51.1%) probable, and 3,169 (44.9%) suspected cases. The crude attack rate was 51.5 cases per 10,000 person-years, and epidemic doubling time was 4.4 days (95% confidence interval [CI] 4.2-4.7) during the exponential growth phase. The median age was 10 years (range 0-85), and 3,126 (44.3%) were male. The typical symptoms were sore throat (93.5%), fever (86.0%), pseudomembrane (34.7%), and gross cervical lymphadenopathy (GCL; 30.6%). Diphtheria antitoxin (DAT) was administered to 1,062 (89.0%) out of 1,193 eligible patients, with adverse reactions following among 229 (21.6%). There were 45 deaths (case fatality ratio [CFR] 0.6%). Household contacts for 5,702 (80.7%) of 7,064 cases were successfully traced. A total of 41,452 contacts were identified, of whom 40,364 (97.4%) consented to begin chemoprophylaxis; adherence was 55.0% (N = 22,218) at 3-day follow-up. Unvaccinated household contacts were vaccinated with 3 doses (with 4-week interval), while a booster dose was administered if the primary vaccination schedule had been completed. The proportion of contacts vaccinated was 64.7% overall. Three MVC rounds were conducted, with administrative coverage varying between 88.5% and 110.4%. Pentavalent vaccine was administered to those aged 6 weeks to 6 years, while tetanus and diphtheria (Td) vaccine was administered to those aged 7 years and older. Lack of adequate diagnostic capacity to confirm cases was the main limitation, with a majority of cases unconfirmed and the proportion of true diphtheria cases unknown. CONCLUSIONS: To our knowledge, this is the largest reported diphtheria outbreak in refugee settings. We observed that high population density, poor living conditions, and fast growth rate were associated with explosive expansion of the outbreak during the initial exponential growth phase. Three rounds of mass vaccinations targeting those aged 6 weeks to 14 years were associated with only modestly reduced transmission, and additional public health measures were necessary to end the outbreak. This outbreak has a long-lasting tail, with Rt oscillating at around 1 for an extended period. An adequate global DAT stockpile needs to be maintained. All populations must have access to health services and routine vaccination, and this access must be maintained during humanitarian crises.


Subject(s)
Diphtheria/epidemiology , Disease Outbreaks/prevention & control , Disease Outbreaks/statistics & numerical data , Public Health , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Bangladesh/epidemiology , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Male , Middle Aged , Refugee Camps , Refugees , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL